Zierfische Gottschalk Hauptstrasse 50 21629 Neu Wulmstorf www.zierfische-gottschalk.de

Ratgeber Nr. 6

Lesen Sie hier, warum Sie CO_2 in Ihr Aquarium geben sollten

 C_{O_2} (Kohlendioxid) ist unbestritten der wichtigste Pflanzennährstoff. Wir wollen Ihnen hiermit kurz die Vorteile und die verschiedenen Möglichkeiten der CO_2 – Zugabe erläutern.

<u>Alle</u> grünen Pflanzen benötigen zum Wachstum Kohlendioxid, kurz CO₂. Wenn jedoch viele Pflanzen in Ihrem Aquarium wachsen sollen, so reicht das CO₂, welches durch die Atmungsaktivität der Fische und Bakterien in das Aquarienwasser gelangt einfach nicht aus. Das macht sich zuerst in einem stagnierenden Pflanzenwuchs bemerkbar.

Durch eine CO_2 – Zugabe wachsen aber nicht "nur" die Pflanzen wesentlich besser; das gesamte "Minibiotop Aquarium" wird wesentlich stabiler. Da die Pflanzen bei gutem Wuchs sehr viele Nährstoffe aufnehmen wachsen die unbeliebten Algen bei weitem nicht mehr so leicht. Außerdem sondern die Pflanzen auch Stoffe ab, welche die Bildung fischschädlicher Bakterien hemmen. Und natürlich produzieren gut wachsende Pflanzen unvergleichlich mehr Sauerstoff (sehr zum Wohl der Fische und Mikroorganismen) als ihre kümmernden Artgenossen.

Es gibt auch noch weitere Vorteile: Der pH - Wert ist wesentlich stabiler – ohne CO_2 – Zugabe steigt der pH Wert bei einer starken CO_2 Aufnahme durch die Pflanzen bis auf 8. Dabei fühlen sich die meisten Fische und Pflanzen einfach nicht mehr so wohl wie etwa bei 7,2.

 E_{s} gibt 4 verschiedene Techniken der CO_{2} - Zugabe in ein Aquarium; welche für Ihr Aquarium die sinnvollste ist, besprechen wir gerne mit Ihnen!

1.) ${\bf CO_2}$ - **Zugabe mittels Tabletten**: hierbei werden Tabletten, die aus einer org. Säure und aus dem Salz der Kohlensäure bestehen in eine spez. Apparatur im Aquarium gegeben. Bei Kontakt mit Wasser wird nun ${\bf CO_2}$ freigesetzt, in der Apparatur aufgefangen und diffundiert anschließend in das Wasser. Für Aquarien bis max. 100l.

Vorteile: Sehr einfache Methode mit sehr geringem Investitionsaufwand. Die Tabletten sind zu Teil mit verschiedenen Spurenelementen versehen, so daß auf eine weitere Flüssigdüngung verzichtet werden kann

Nachteile: Durch die stoßweise CO_2 - Zugabe kommt es zu pH - Wert Schwankungen. Die CO_2 Menge ist kaum bedarfsgerecht zu regeln. Die Reste der org. Säure, die zwangsläufig in das Wasser gelangen, können zu einer starken Sauerstoffzehrung führen, dies kann zum "kippen" des Aquariums führen. Muß regelmäßig, mehrmals pro Woche, verabreicht werden.

2.) "Bio Kohlensäure": Spezielle Mikroorganismen bzw. Enzyme produzieren aus einem Nährstoff CO_2 . Dieses CO_2 wird dann, je nach Ausstattung der Anlage, mit einem Sprudelstein oder einem "Flipper" in das Aquarium gegeben. Für Aquarien bis ca. 140l.

Vorteile: Preiswerte Methode. Über einen Zeitraum von durchschnittlich einem Monat recht gleichmäßige CO_2 - Zugabe. In diesem Zeitraum auch nahezu wartungsfrei.

Nachteile: Während der Anfangs und Endphase der biologischen Aktivität nur ungenügende CO_2 Mengen. Freigesetzte CO_2 Menge variiert mit der Temperatur. Nur sehr eingeschränkte Möglichkeiten die CO_2 Menge dem Bedarf anzupassen.

3.) **Kohlendioxid durch Elektrolyse**: Bei dieser Technik wird Wasser (theoretisch) mittels Elektrolyse in Wasserstoff und Sauerstoff aufgespalten. Der Sauerstoff soll mit der zum Gerät gehörigen

Kohleelektrode zu CO_2 reagieren (tatsächlich funktioniert dies nur in destilliertem Wasser). Für Aquarien bis ca. 400l

Vorteile: Wenig Platzbedarf im und am Aquarium, leichte Handhabung. Die Anlagen lassen sich (in gewissen Grenzen) regulieren. Der Zustand der Kohleelektrode wird am Gerät angezeigt und so auf einen fällig werdenden Wechsel hingewiesen. Durch Anschluß an eine Zeitschaltuhr kann die CO_2 – Zugabe für die Nacht beendet werden. Durch Anschluß an ein pH - Meß- und Regelgerät ist (theoretisch) eine exakte, automatisch bedarfsgerechte Steuerung möglich.

Nachteile: Es lässt sich kaum abschätzen, welche schädlichen Auswirkungen die Elektrolyse auf die Fische und Pflanzen hat. Es laufen hierbei auch einige andere, zum Teil noch unbekannte, chem. Reaktionen ab, chemische Gleichgewichte werden zerstört. Es wird Knallgas produziert. Die Karbonathärte wird reduziert. Fische die sich mit elektrischen Organen orientieren werden stark verwirrt. Die entstehende Kohlendioxid Menge ist gering.

4.) Kohlendioxid aus Druckgasflaschen: Diese Anlagen bestehen aus der Druckgasflasche mit flüssigem CO₂ und einem Druckminderer mit Arbeitsdruck und Flaschendruckanzeige. Hieran installieren wir fest, ohne Schlauchverbindungen, ein Magnetventil zu Abschaltung der CO₂ - Zufuhr. Anschließend folgt das Feinnadelventil, ebenfalls fest installiert, zur genauen CO₂ - Dosierung. Nun geht es mit einer Schlauchverbindung weiter; es folgt ein Rückschlagventil (zum Schutz von Magnetventil und Druckminderer) und ein Blasenzähler zur Kontrolle der CO₂ - Dosierung. Die Auflösung des CO₂ 's im Aquarienwasser erfolgt mittels Gottschalk's CO₂ Reaktor (ein einmaliger, von uns entwickelter Druckreaktor, der an jeden beliebigen Außenfilter angeschlossen werden kann- unsichtbar im Unterschrank – zuverlässig und sicher) oder eines Keramikausströmers. Der Druckreaktor erreicht die effektivste Auflösung. Mit einer Zeitschaltuhr wird des Nachts die CO₂ – Zufuhr unterbunden. Durch den Anschluß an ein pH Meß- und Regelgerät ist eine exakte, automatisch bedarfsgerechte Steuerung möglich. Für Aquarien bis 2000l.

Vorteile: Bei richtiger Dosierung keinerlei unerwünschte Nebenwirkungen möglich. Einfache und kostengünstige Füllung der CO_2 - Druckgasflaschen bei uns im Geschäft. Daher nur geringste Folgekosten. Seit Jahrzehnten bewährtes Prinzip und vollkommen ausgereifte Technik.

Nachteile: Abgesehen von einer etwas höheren Anfangsinvestition gibt es keine.

 D_{ie} Tabelle zeigt den, aus der Karbonathärte (DKH) und pH – Wert resultierenden CO_2 – Gehalt. Die anzustrebenden Werte sind fett und unterstrichen dargestellt.

$pH \rightarrow$	6,6	6,8	7,0	7,2	7,4	7,6	7,8	8,0
↓ DKH								
3	21	13,5	8,5	5	3	2	1,5	1
4	28,5	18	11	7	4,5	3	1,5	1
5	35,5	22	14	9	5,5	3,5	2	1
6	43	27	17	11	7	4	2,5	1,5
8	57	36	22,5	14	9	5,5	3,5	2
10	71	45	28	<mark>18</mark>	11	7	4,5	3

Denken Sie doch einmal ernsthaft über eine CO₂- Anlage nach, Sie werden überrascht sein, wie groß der Erfolg sein wird.

Frank Gottschalk & sein Team

Zierfische Gottschalk – prächtige Aquarien